Comparisons of statistical downscaling methods for air temperature over the Qilian Mountains

نویسندگان

چکیده

Air temperature is an important indicator of climate change, as well for understanding changes in hydrology, ecology, and other natural systems. However, meteorological stations that provide reliable observations are usually sparse areas complex terrain, thus limiting our ability to quantify high spatial resolution variability these regions. Here, we apply three statistical downscaling methods daily air output from the sixth Coupled Model Intercomparison Project (CMIP6), validated with 22 over Qilian Mountains. Based on different methods, find RMSE MAE reduced much 59–66%, ratio annual average decreasing 147.9 61.0% 143.3 64.7%, respectively, depending method. Compared original data, based best differed by −2.85±3.61°C during historical 1850–2014 period and, 2015–2100 projections, 2.13±3.30°C SSP1-2.6, −2.13±3.29°C SSP2-4.5, −2.11±3.24°C SSP3-7.0, −2.12±3.23°C SSP5-8.5. The downscaled temperatures show a warming trend ranging 0.15–0.22°C/10 years experiment, 0.08–0.14°C/10 0.24–0.35°C/10 0.43–0.63°C/10 0.52–0.76°C/10 SSP5-8.5 These results indicate accuracy improved compared data. also that, projections have been overestimated.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-linear statistical downscaling over Europe

Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe M. Vrac, D. Paillard, and P. Naveau Laboratoire des Sciences du Climat et de l’Environnement, LSCE, CEA/CNRS/UVSQ, Institut Pierre Simon Laplace (IPSL), Centre d’étude de Saclay, Orme des Merisiers, 91191 Gif-Sur-Yvette, France Received: 20 June 2007 – Accepted: 20 June 2007 – Published: 6 July 2007...

متن کامل

A statistical downscaling method for daily air temperature in data-sparse, glaciated mountain environments

This study presents a statistical downscaling (SD) method for high-altitude, glaciated mountain ranges. The SD method uses an a priori selection strategy of the predictor (i.e., predictor selection without data analysis). In the SD model validation, emphasis is put on appropriately considering the pitfalls of short observational data records that are typical of high mountains. An application ex...

متن کامل

Clustering Methods for Statistical Downscaling in Short-Range Weather Forecasts

In this paper an application of clustering algorithms for statistical downscaling in short-range weather forecasts is presented. The advantages of this technique compared with standard nearest-neighbors analog methods are described both in terms of computational efficiency and forecast skill. Some validation results of daily precipitation and maximum wind speed operative downscaling (lead time ...

متن کامل

Evaluation and projection of daily temperature percentiles from statistical and dynamical downscaling methods

The study of extreme events has become of great interest in recent years due to their direct impact on society. Extremes are usually evaluated by using extreme indicators, based on order statistics on the tail of the probability distribution function (typically percentiles). In this study, we focus on the tail of the distribution of daily maximum and minimum temperatures. For this purpose, we a...

متن کامل

conditional copula-garch methods for value at risk of portfolio: the case of tehran stock exchange market

ارزش در معرض ریسک یکی از مهمترین معیارهای اندازه گیری ریسک در بنگاه های اقتصادی می باشد. برآورد دقیق ارزش در معرض ریسک موضوع بسیارمهمی می باشد و انحراف از آن می تواند موجب ورشکستگی و یا عدم تخصیص بهینه منابع یک بنگاه گردد. هدف اصلی این مطالعه بررسی کارایی روش copula-garch شرطی در برآورد ارزش در معرض ریسک پرتفویی متشکل از دو سهام می باشد و ارزش در معرض ریسک بدست آمده با روشهای سنتی برآورد ارزش د...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical and Applied Climatology

سال: 2022

ISSN: ['1434-4483', '0177-798X']

DOI: https://doi.org/10.1007/s00704-022-04081-w